A New Rough Set Reduct Algorithm Based on Particle Swarm Optimization

نویسندگان

  • Benxian Yue
  • Weihong Yao
  • Ajith Abraham
  • Hongbo Liu
چکیده

Finding appropriate features is one of the key problems in the increasing applications of rough set theory, which is also one of the bottlenecks of the rough set methodology. Particle Swarm Optimization (PSO) is particularly attractive for this challenging problem. In this paper, we attempt to solve the problem using a particle swarm optimization approach. The proposed approach discover the best feature combinations in an efficient way to observe the change of positive region as the particles proceed through the search space. We evaluate the performance of the proposed PSO algorithm with Genetic Algorithm (GA). Empirical results indicate that the proposed algorithm could be an ideal approach for solving the feature reduction problem when other algorithms failed to give a better solution.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Rough Set Reduct Algorithm for Medical Domain Based on Bee Colony Optimization

Feature selection refers to the problem of selecting relevant features which produce the most predictive outcome. In particular, feature selection task is involved in datasets containing huge number of features. Rough set theory has been one of the most successful methods used for feature selection. However, this method is still not able to find optimal subsets. This paper proposes a new featur...

متن کامل

A Dimension Reduction Approach to Classification Based on Particle Swarm Optimisation and Rough Set Theory

Dimension reduction aims to remove unnecessary attributes from datasets to overcome the problem of “the curse of dimensionality”, which is an obstacle in classification. Based on the analysis of the limitations of the standard rough set theory, we propose a new dimension reduction approach based on binary particle swarm optimisation (BPSO) and probabilistic rough set theory. The new approach in...

متن کامل

Optimizing The Classification System Based On Rough Set Theory

Every day, we are observing that a wide-ranging amount of data and information is being stored every moment. Mostly the information is dynamic and transactional, and each time the data is being updated from time to time. Getting knowledge from this kind of huge and dynamic data is really becoming tough task with respect to time and efficiency. Fortunately we are served with the intelligent proc...

متن کامل

Nature Inspired Multi-Swarm Heuristics for Multi-Knowledge Extraction

Multi-knowledge extraction is significant for many real-world applications. The nature inspired population-based reduction approaches are attractive to find multiple reducts in the decision systems, which could be applied to generate multi-knowledge and to improve decision accuracy. In this Chapter, we introduce two nature inspired populationbased computational optimization techniques namely Pa...

متن کامل

A Study on Rough Set Theory Based Dynamic Reduct for Classification System Optimization

In the present day huge amount of data is generated in every minute and transferred frequently. Although the data is sometimes static but most commonly it is dynamic and transactional. New data that is being generated is getting constantly added to the old/existing data. To discover the knowledge from this incremental data, one approach is to run the algorithm repeatedly for the modified data s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007